Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(3-nitrobenzylidene)-trans-1,2-cyclohexanediamine

Zhao-Di Liu, ${ }^{\text {a }}$ Min-Yu Tan ${ }^{\text {a }}$ and Hai-Liang Zhu ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and ${ }^{\mathbf{b}}$ Institute of Functional Biomolecules and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: minyu-tan@126.com, hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.093$
$w R$ factor $=0.199$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$, is a potentially N, N^{\prime} bidentate donor ligand with two chiral C atoms. In the crystal structure, the molecules form centrosymmetric dimers via C $\mathrm{H} \cdot \mathrm{N}$ hydrogen bonds.

Comment

Chiral Schiff base complexes based on optically active 1,2diamines (mainly 1,2-cyclohexanediamine) have been used in the epoxidation of cis-disubstituted olefins (Bernardo et al., 1996; Jacobsen, 1993), cyclic dienes (Chang et al., 1994) or polyenes (Chang et al., 1993). As we are interested in chiral Schiff base ligands, we report here the synthesis and crystal structure analysis of a new potentially bidentate chiral ligand, the title compound, (I).

(I)

The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al.,

Figure 1
The molecuar structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Received 3 March 2005 Accepted 7 March 2005 Online 18 March 2005
1987). The $\mathrm{C} 15-\mathrm{C} 14-\mathrm{N} 3$ bond angle of $124.0(4)^{\circ}$ is almost the same as the $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2$ angle $\left[123.6(3)^{\circ}\right]$. The dihedral angle between the two benzene rings is $62.8(2)^{\circ}$.
In the crystal structure of (I), molecules related by a centre of symmetry are linked to form dimers via $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1 and Fig. 2).

Experimental

1,2-Diaminocyclohexane ($57.1 \mathrm{mg}, \quad 0.5 \mathrm{mmol}$) and 3-nitrobenzaldehyde ($151.1 \mathrm{mg}, 1 \mathrm{mmol}$) were combined in 10 ml of ethanol as solvent. After stirring for 2 h , the resulting solution was allowed to stand in air for 10 d . White crystals of (I) formed on slow evaporation of the solvent. The crystals were isolated, washed with ethanol and dried. Elemental analysis, found: C 63.18, H 5.32 , N 14.69%; calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$: C 63.15, H 5.30, N 14.73%.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$
$M_{r}=380.40$
Monoclinic, $C 2 / c$
$a=19.288$ (4) A
$b=15.840$ (3) \AA
$c=15.485$ (3) \AA
$\beta=124.297$ (3) ${ }^{\circ}$
$V=3908.3(13) \AA^{3}$
$Z=8$

$$
D_{x}=1.293 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1852 reflections
$\theta=4.3-28.4^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, white
$0.26 \times 0.21 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.976, T_{\text {max }}=0.993$
13932 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0612 P)^{2}\right. \\
& \quad+1.394 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.093$
$w R\left(F^{2}\right)=0.199$
$S=1.06$
4260 reflections
259 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.93	2.61	$3.520(5)$	166
Symmetry code: $(\mathrm{i})-x+\frac{1}{2},-y+\frac{1}{2},-z+2$.				

The H atoms bonded to atoms C 8 and C 9 were located in a Fourier difference map; their positional parameters were refined, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with

Figure 2
A view of the hydrogen-bonded dimer of (I). Dashed lines indicate hydrogen bonds. [Symmetry code: (A) $\frac{1}{2}-x, \frac{1}{2}-y, 2-z$.]
$\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F \& Meunier, B. (1996). Inorg. Chem. 35, 387-396.

Chang, S., Heid, R. M. \& Jacobsen, E. N. (1994). Tetrahedron Lett. 35, 669-672.
Chang, S., Lee, N. H., Jacobsen, E. N. (1993). J. Org. Chem. 58, 6939-6941.
Jacobsen, E. N. (1993). Catalytic Asymmetric Synthesis, edited by I. Ojima, pp. 159-202. New York: VCH.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version. 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.

